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ABSTRACT
Longer range, in rural/urban IoT networks, allow a large ge-
ographical coverage with only a few base-stations, making
their deployment and operation economical. In this paper we
explore the 150-174 MHz spectrum for long range IoT networks
comprising unlicensed MURS and licensed VHF narrowbands.
Range in these bands is boosted by the lower RF frequen-
cies as well as higher transmit powers allowed by the FCC.
Through a 400 sq km wide area deployment study, we show
that, these spectrum bands can provide > 20× the geograph-
ical coverage than that in the 900 MHz ISM band LoRa.
Increased range translates to greater uplink IoT device

traffic. The key contribution of this paper is a novel
technique – Blind Distributed MU-MIMO, that allows
capacity to scale with the number of antennas (base-
stations) while not requiring any coordinated chan-
nel measurements between the devices and IoT base-
stations. This requirement is crucial since in IoT networks
power constrained IoT devices typically sleep and wake up to
transmit short messages in response to unpredictable events
without any coordination with the base-stations. We demon-
strate the efficacy of Blind Distributed MU-MIMO through a
real wide area deployment.
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1 INTRODUCTION
A large number of urban/rural IoT applications (e.g. smart
agriculture, smart cities etc.) require long range wireless
connectivity to the IoT devices. Longer range helps cover a
vast geographical area with fewer base-stations and conse-
quently lowers network deployment and operational costs.
Existing wide area IoT networks use either the unlicensed
ISM bands [4] or rely on cellular connectivity. In this paper,
we explore the use of 150-174MHzVHF spectrumcom-
prising unlicensedMulti-UseRadio Service (MURS) [5]
and licensedVHFnarrowband channels [2] for IoTnet-
working. The key advantage of using these bands is a signif-
icantly superior range fueled by two factors – 200× higher
transmit power allowance by FCC in these bands compared
to that in the ISM bands and, superior radio propagation
characteristics at 150-174 MHz frequencies.
Order ofMagnitudeHigherCoverage.Wehave deployed
an IoT network convering 400 km2 of urban/sub-urban areas
with a traffic of ≈ 300,000 uplink messages/day operating
over the MURS bands. Our measurements demonstrate that
an IoT base-station operating in MURS bands can provide >
20× the geographical area coverage compared to that in 900
MHz ISM spectrum using LoRa.
Challenge ofNetworkCapacity andDistributedMIMO.
This increased geographical coverage translates to a larger
number of IoT devices and consequently the need to ac-
commodate higher uplink network capacity. Given the lim-
ited amount of licensed/unlicensed spectrum available in
these bands (≈ 24MHz), distributed MIMO [14, 18, 39, 40, 58]
provides the promise of scaling capacity by enabling base-
stations to collaboratively decode concurrent transmissions.
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Need for Blind Distributed MU-MIMO (Iris). In order
to enable simultaneous decoding of multiple concurrent
transmissions using distributed MIMO, the channel parame-
ters and carrier frequency offsets (CFO) for all participating
transmitter-receiver pairs must be known. Thus, communi-
cation in existing systems alternates between a measurement
phase and a transmission phase. In the measurement phase,
all participating transmitters and receivers coordinate to first
conduct channel measurements and then all transmitters
transmit concurrently. Expecting this manner of coordina-
tion between IoT devices and base-stations, as well as the
resulting measurement phase overheads is not a viable op-
tion for IoT networks. This is because, a typical IoT network
comprises power constrained IoT devices that predominantly
sleep (turn radios off) and sporadically wake up on the oc-
currence of events to transmit short notification messages
(typically a few bytes). In this paper we present a novel
technique named Iris– Blind Distributed Multi-User
MIMO, that eliminates the need for coordination and
a measurement phase; IoT devices may simply trans-
mit at any time as usual.
How IrisWorks Iris leverages a key property of MURS and
VHF narrowband channels – unlike wider channels, they
can be represented by a single complex number (since the de-
lay spread of the channel is much smaller than the required
Nyquist sampling rate). Concurrent transmissions from IoT
devices (note that transmissions may all have started at dif-
ferent points in time from different IoT devices) superimpose
in the wireless channel and are received at various base-
stations. The base-stations then forward received IQ samples
to a central entity in the cloud. Using the received IQ samples
and the known preamble IQ samples, and the unknown chan-
nels, CFOs and undecoded symbols, Iris forms and solves
a set of non-linear equations in real time. This allows Iris
to decompose the received superimposed signals into the
IQ sample streams corresponding to individual IoT devices.
Once the streams of IQ samples for the various transmissions
are separated, the decoder decodes each stream to extract
the data in each packet. This ability of Iris to separate out
IQ samples from individual concurrent streams allows it to
perform distributed MIMO even for non-linear and phase
non-coherent modulation schemes such as FSK which is
mandated by the FCC in MURS bands.
Summary of Contributions.
• We present the first measurement study for an IoT net-
work in the MURS band using a pilot deployment span-
ning 400 km2, 90 mobile IoT devices transmitting 300,000
messages/day. Our deployment demonstrates 20× greater
coverage, compared to LoRa at 900 MHz.

• We propose a novel blind distributed multiuser MIMO
technique that allows base-stations to perform distributed

MIMO and receive concurrent uplink transmissions with-
out requiring any coordinated measurements with the
devices. Iris can even work with non-linear and non-
coherent modulations e.g. FSK since it can separates con-
current transmissions at the IQ sample level.

• We evaluate Iris using a real deployment and demonstrate
that it is practical. Having the advantage of a real large
scale IoT network deployment.

2 MURS BAND - MEASUREMENT STUDY
The unlicensed MURS band [5], created in 2000 by FCC, com-
prises 5 channels (three 11.5 kHz and two 20 kHz channels) in
the 150 MHz spectrum. The licensed VHF narrowbands [2] in
150-174 MHz, have been traditionally used for handheld ra-
dio communication for public safety and industrial/business
applications over 25 kHz channels. As of 2013, the FCC nar-
rowbanding mandate [20] requires that these channels be
12.5 kHz and can be used for two way data or voice com-
munication. These licensed VHF narrowband channels can
be leased in sets of 2 channels for a period of 10 years by
applying to FCC. In this section we use a measurement study
to argue that these bands can provide a significantly higher
range compared to ISM bands as well as whitespaces, making
it extremely economical to deploy wide area IoT networks.
To the best of our knowledge, there has been no prior work
studying these bands for IoT applications.
MURS and VHF Narrowband Regulations. FCC allows
IoT devices to transmit data at 2W in these narrowband chan-
nels (200× higher than the maximum 100mW allowed in ISM
bands and whitespaces). The regulation also mandates the
use of FM/FSK modulation for MURS band with a maximum
allowed frequency deviation.

2.1 Deployment and Measurement Study
We partnered with a well known field services company to
pilot a large scale IoT network over the MURS band. The
company provides several services such as food catering, wa-
ter and beverage distribution, furniture movement etc. over
nine cities covering ≈ 400 km2 of geographical area using a
fleet of vehicles. We used the Raveon RV-M7-VM-GX [10]
MURS band modem to build a vehicle tracking device (Fig. 1)
that transmits vehicle latitude, longitude, altitude, heading,
speed etc. over the MURS channels at 2W (33 dBm) trans-
mit power and 4800bps. We deployed these devices on 90
vehicles. The vehicles transmit once every 10 seconds, only
when there is a “significant” change (1 m or more) in their
location. The base-stations do not perform any downlink
transmissions or acknowledgements, as reporting GPS data
can tolerate occasional packet loss. Our base-stations were
also built using the same transceiver and located on roof-tops
about 20m high above the ground. The network transmits



Figure 1: Vehicles and MURS
IoT device.

Figure 2: Base-station and an-
tenna on roof top

Figure 3: Screenshot of real
time vehicle locations. Figure 4: MURS measure-

ment locations obtained by a
single BS.
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Figure 5: MURS and LoRa
band path loss curve.
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Figure 8: MURS band anten-
nas for vest and quad-copter.

over ≈ 300,000 IoT messages each day and has been in use by
the company for the past one year. Fig. 3 shows a screenshot
of the real-time view.
Range ofMURS. Fig. 5 depicts the dependence ofmean RSSI
(over measurements from all 90 vehicles) with distance for
MURS transmissions plotted using 3,000,000 measurements
collected over a period of ten consecutive days from the
vehicles in our deployment from one of the base-stations.
To plot Fig. 5, we collected all RSS measurements within
distance bins of 100 m resolution and averaged them. As
seen from Fig. 5, the BS has a range of about 13 to 14 km
(range corresponding to -105 dBm where packet success rate
falls below 80%). Fig. 4 depicts the locations of the vehicles
from which this BS received messages on a map.
ADrive BasedDirect ComparisonWith 900MHz LoRa.
To compare MURS and the 900 MHz band LoRa, we used a
Dragino LoRa Shield board (equipped with Semtech SX1276
LoRa chip) connected to an Arduino boards as the client. To
appropriately compare ranges we kept the data transmission
rate of the devices must be similar – our MURS and LoRA
devices transmited at 4800bps, and 4557bps (spreading factor
of 7, 125 kHz bandwidth, coding rate of 6/4) respectively at
their FCC allowed maximum output power limits. We placed
a LoRa BS on the same location as the MURS BS used for
measurements. We found that LoRa transmissions reception
probability fell under 80% probability at -113 dBm.

We placed a LoRa device and a MURS device both on the
same vehicle transmitting the GPS position every second.
This allowed us to obtain RSSI measurements from both
these devices from the same set of geographical locations
as the vehicle drives. Fig. 6 depicts the RSSI for each of the

devices with distance as the vehicle travelled away from the
base-station. As seen from Fig. 6, MURS band RSSIs are about
30-40 dB higher than that received by LoRa. In fact, after
about 3 km the LoRa BS stopped receiving transmissions as
the signal strength was too low.
Path Loss Curves. In order to measure the coverage of
LoRa, we performed several additional drives around areas
as far as 10 km around the BS. Fig. 5 depicts the path loss
curve for LoRa obtained from 20,000measurements, the same
way as we did for MURS and has a range of about 2.5 km
(corresponding to -113 dBm). Similar LoRa range results have
been reported for urban environments by several researchers
in the past for urban environments for LoRa in 900 MHz
at 4557bps. [51, 57, 70]. We modeled the received power
at a distance d Km, P(d) using the Log Distance Path Loss
(LDPL) model given by, P(d) = P0 − 10γ log10 (d) (in dBm)
where P0 is the received power 1km away and γ the path
loss exponent. < P0,γ > for MURS and LoRa were found
to be < −81.6, 2.05 > and < −104, 2.4 >. The higher γ
indicates the faster decay of transmissions in the 900 MHz
band compared to the 150MHz MURS band. This shows that
two factors contribute to MURS band’s higher range – higher
transmit power allowed by FCC in the MURS band and, the
slower path loss decay in the 150 MHz band.
ComparingMURSband andT.Vwhitespaces.T.Vwhites-
paces can potentially be used for IoT applications [13, 74].
FCC regulations allow a maximum of 20 dBm (100 mW) over
6MHz channels. While T.V whitespace frequencies around
and below 174 MHz, can have similar or better propagation
characteristics than MURS band, the 200× higher transmit
power and lower noise floor due to narrowband channels



provides MURS bands a significant advantage. T.V whites-
paces however, offer the advantage of providing significantly
higher data rates as they provide up to 6 MHz channels and
can be used for IoT applications that require higher data
rates e.g. video/audio signals.

2.2 Multipath in Narrowband Channels
A key property of using narrowband channels is that they
experience no inter-symbol interference (ISI) due to multi-
path. This is because the multipath delay spread is much
smaller than the Nyquist sampling of the narrowband chan-
nel. Consider for example, that the Nyquist sampling interval
for 12.5 kHz channel is 80 µs. This means that only reflec-
tion paths greater than 27km (light travels 1km in 3µs ) will
cause ISI. Given that the range of the radio is far smaller than
27km, such large multipaths have power far below the noise
floor. Given the absence of ISI, the narrowband wire-
less channel experiences flat fading and can be repre-
sented by a single complex number [19].
In order to experimentally establish the above property,

we conducted outdoor delay spread measurements. In our
experiments, transmitters transmit 13-sample Barker code
continuously at the sampling rate of 12.5 kHz from five out-
door locations to the base-station. The impulse response of
the channel is estimated by deconvolving the received signal
with the Barker code sequence. We then measure the RMS
delay spread [36] of the 100,000 collected impulse responses.
The distribution of the delay spread RMS values from differ-
ent measurements are plotted in Fig. 7. Almost all measured
delay spreads fall below 40µs, while each sample is 80µs long,
thus demonstrating the lack of ISI.

2.3 Limitations
We now discuss the limitations of using MURS and VHF
narrowbands for long range IoT applications.
Limited Bandwidth (12.5 kHz). The limited bandwidth
of these channels (mostly 12.5 kHz) limits the maximum
data rate that may be supported per channel few kbps. This
precludes data intensive IoT applications that transmit video
or high resolution images for example. However, they are
suitable of a large number of IoT applications need only
transmit a few bytes e.g. smart utility meters transmit a
few bytes of data once every few hours, GPS devices to
track people, animals and vehicles and applications that send
alarms and messages in response to sporadic events.
Larger Antenna Size. Lower frequencies typically require
larger antenna sizes owing to the longer wavelengths. For
example, a quarter wavelength whip antenna at 150MHz
will be about 50cm long compared to only 8cm for ISM 900
MHz. Large antenna sizes increase the form factor of the IoT
devices and potentially preclude several applications that

require small sized devices. However, it is possible to design
compact or viable antennas that specifically designed an
application. For example, Fig. 8 shows a MURS vest antenna
(PHARAD [12]) that can be worn by public safety personnel
or police officers, as well as a 150MHz phantom antenna
(TRAT1500 [11]) that be mounted on quadcopters.

3 DISTRIBUTED MIMO AND MU-MIMO
In order to take advantage of the increase in range of the base-
station, the network must also be able to support traffic from
a larger number of IoT devices. Distributed MIMO performs
joint multi-user beamforming enabling independent access
points (APs) to beamform their signals, and communicate
with their potentially interfering clients concurrently on the
same channel as if they were one large MIMO transmitter
[14, 18, 39, 40, 58]. Uplink Multi-User MIMO (MU-MIMO)
operates in similar principle to support multiple concurrent
data streams from a group of users to the AP [17, 35, 66]. Al-
though they have differences, our primarily aim is to enable
concurrent uplink transmission, for which distributed MIMO
and MU-MIMO share the same principle, thus we discuss
them together in this section.
Requirements for enabling distributed andMU-MIMO.
(i) In order to enable beamforming, with NT transmitters and
NR receivers, all the NR ×NT channels must be known prior
to the decoding. (ii) All the NR × NT CFO values are needed
for decoding. (iii) The transmitters need to be coordinated
and time synchronized to transmit precoded symbols.
Distributed MIMO andMU-MIMO operation. The oper-
ation typically contains two phases. (i) The NT transmitters
conduct a coordinated channel estimation phase, where each
AP takes turn to send channel and CFO estimation sequence
and collect feedback from the NR receivers. An illustration
of this process is well presented from Fig. 9, which we bor-
row from [58]. Later works have managed to reduce the
overhead associated with this phase by taking advantage
of channel reciprocity, CFO across receivers are fixed and
can be known, and etc. [14, 18, 39, 40]. Minimally, CFO and
channel estimation involves each transmitter and receiver
sending estimation sequence and feedback once in sequence,
which incurs an overhead of NT +NR messages. (ii) With the
collected channel feedback, the transmitters precode their
transmissions, in order to enable concurrent transmissions.
Precoding the transmissions require the transmitters to be
time synchronized, which is typically enabled by the wired
connection among transmitters [58] or transmitting synchro-
nization beacons [35, 40].
Need for Blind MIMO in IoT networks. IoT device ra-
dios are configured to be turned off by default to save power.
They are turned on to transmit messages to convey the oc-
currence of sporadic events that occur unpredictably. The



Figure 9: Illustration of distributed MIMO channel es-
timation phase (originally from [58]).

messages themselves are only a few bytes. Consequently,
introducing distributed MU-MIMO in an IoT network faces
two key challenges: the impracticality of conducting the
coordinated measurement phase with multiple IoT devices
and the high signalling overhead. With random triggering
sporadic events and mostly turned off radios, requiring a
measurement phase where all IoT devices and BS coordinate
becomes impractical. Further, distributed MIMO’s channel
feedback overhead grows rapidly as the network size in-
creases [39]. The problem is already significant in WLANs –
a 8×8 distributed MIMO incurs over 20% signalling overhead
in WLAN with 100ms feedback interval even with packets
with megabytes of data. In IoT where message sizes are only
a few bytes, and devices are power constrained, this overhead
can be crippling. Thus, in order enable distributedMIMO
and achieve high throughput in a long range IoT net-
work, the design must eliminate signalling overhead,
and cannot assume any coordination or synchroniza-
tion among IoT client devices. We illustrate how Iris
achieves these two goals in the next section.
4 IRIS
Iris completely eliminates the need for a dedicated channel
and CFOmeasurement phase. It allows devices to transmit as
usual, independently and at arbitrary times. The operation
of Iris is depicted in Fig. 10. When multiple devices concur-
rently transmit, the received signal at each base-station is
a linear combination of the individual transmissions. The
base-stations forward the IQ samples received to a central
entity in the cloud that uses Iris to decompose these received
signals into individual IQ sample streams from each of the
transmitting devices. Given that the sample duration for each
sample is 80 µs for 12.5KHz channels, the GPSDO is able to
synchronize the samples to sub-sample accuracy. The IQ
sample streams are then demodulated individually. Since Iris
retrieves the signals from each devices at the IQ sample level
and the demodulation is performed on the IQ samples, it can
be used with any arbitrary modulation scheme, even non-
linear and phase non-coherent modulations such as FSK (as
mandated by FCC for MURS bands). The key challenge Iris
overcomes is to reliably estimate CFO and channels between

the transmitting devices and the receiving base-stations us-
ing the preambles while simultaneously recovering the IQ
samples of the individual data streams. Iris is amenable to
parallel multi-threaded implementation and has been im-
plemented in C and python (details in Sec. 5) allowing it to
perform real-time decoding while scaling to a large number
of concurrent transmissions.

4.1 Iris Operation Overview
Iris has three distinct phases of decoding –idle state, steady
state and, blind estimation state. The state diagram is pre-
sented in Fig. 11. Iris starts in the idle state corresponding to
When there are no ongoing transmissions being received at
the base-stations. Upon detecting one or more new pream-
bles indicating new packet transmissions, Iris transitions into
the blind estimation state. In this phase, Iris decodes while
simultaneously estimating the CFOs and channels between
all transmitter-receiver pairs, after which it moves into the
steady state. In the steady state, the CFO and channels at
each receiver for all the concurrent transmissions have al-
ready been estimated, consequently, estimating the next IQ
samples for each transmission is akin to standard MIMO
decoding (Sec. 4.2).

In the steady state, if a preamble is detected, Iris once again
enters the blind estimation state as there one or more new
transmissions whose CFO and channels are unknown and it
is not possible to estimate the IQ values of the already ongo-
ing transmissions. However, the first few IQ samples of the
new transmissions are already known since they are pream-
bles. Iris stalls estimation of IQ samples and decoding until it
can accumulate enough information (samples) to allow joint
estimation of all the unknown data samples from ongoing
transmissions and the CFOs, channel parameters of all the
new transmissions. Once it has enough samples, Iris uses
blind estimation (Sec. 4.3) to jointly estimate unknown CFOs,
channels and the pending unknown data IQ samples. Then
once again, having estimated all the channel parameters and
CFOs, Iris resumes its steady state decoding. Steady state
decoding as well as blind estimation, Iris has to keep track of
the number of transmissions by counting the number of de-
tected preambles and the transmissions that ended. Having
estimated the IQ samples of each individual transmission,
each of the sample streams are demodulated and decoded
into symbols. Therefore, Iris is modulation-independent. To
provide an insight to the reader, we provide an illustrative
example (Fig. 12).
Steady State Example. Here the CFO and channels at each
receiver for all the concurrent transmissions have already
been estimated. In Fig. 12 (a), there were NT ongoing trans-
missions, all of whose CFOs and channels have already been
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estimated. A new transmission (Packet P1) begins at sam-
ple n1. Until sample n1 − 1, Iris operates in steady state and
the samples of all concurrent transmissions can be decoded
using steady state decoding described in Sec. 4.2. However,
beginning from n1, not knowing the CFO and channel for the
new transmission, Iris can no longer estimate IQ samples of
the ongoing transmissions using steady state decoding and
enters the blind estimation phase. Note that, Iris will detect
the new transmission only after it has received n1 + LP th
sample, where LP is the length of the packet preamble. In our
implementation, we use a Barker code of length 13 samples
as a preamble. Thus, Iris can only be certain about the num-
ber of active transmissions for samples that were received LP
samples before the current sample. Consequently, Iris always
has to maintain a buffer of at least LP + 1 samples.
Blind Estimation Example. Prior to sample n1 there were
nT unknowns corresponding to the samples of each trans-
mission. At the nth sample, since the preamble is known,
now there are nT + 2 ∗ NR unknowns including the new
transmissions CFOs and channels. Consequently, Iris must
jointly estimate all these variables from the NR received
transmissions at NR antennae. In general, τ samples into the
new transmission’s preamble i.e. at the (n1+τ )th sample, Iris
must jointly estimate 2∗NR +τNT unknowns corresponding
to all the unestimated samples from ongoing transmissions
thus far from NR ∗τ received samples. At τ = τ0 samples, Iris
has enough samples to solve for all the 2 + τ0NT unknowns
accumulated thus far. At this point, Iris uses blind estimation
to jointly solve for all the unknowns and thus determines

the CFO and channel for the new transmission and resumes
to steady state decoding phase. The same sequence repeats
when a new preamble is detected again in the steady state
phase. This is depicted in Fig. 12 (b).
Arrival of another preamble within τ0 samples. As de-
picted in Fig. 12 (c), a new transmission (packet P2) may
initiate before τ0 samples i.e before Iris is able to solve for all
the pending unknowns. This new transmission adds an extra
2NR unknowns, the corresponding CFOs and channels) to
be estimated. This has an effect of increasing the value of τ0,
the minimum samples needed before all the unknowns can
be solved using blind estimation after which Iris resumes to
steady state decoding. Thus, the value of τ0 depends on the
number of unknown transmissions that keep arriving during
the blind estimation phase.

It is possible that too many new packets arrive too quickly,
leaving insufficient samples to estimate their channels. This
would cause Iris’s decoding to fail. Similar to all MIMO sys-
tems, the number of concurrent packets that can be sup-
ported is always related to the number of receivers. We dis-
cuss this scenario along with other possible failures and their
impacts in Sec. 4.5.

4.2 Steady State Decoding
The received IQ samples yi at receiver i are a superposition
of the signals received from all transmitters that are in range:

yi [n] =
NT∑
k

hik · e j2π∆fiknTS · xk [n] (1)



In Eqn 4.2 n is the discrete sample time index, and Ts is the
sample duration. xk

[
n
]
is transmitter k’s complex sample,

∆fik and hik represents the CFO and complex channel be-
tween transmitter k and receiver i . As described in Sec. 2.2,
hik is a single complex number. Eqn 4.2 is independent of
the modulation scheme – thus, it applies to even non-linear
modulation schemes such as FSK.
If there are NT concurrent transmissions being received

at NR receivers, based on Eqn 1 we have,

x
[
n
]
= H

[
n
]
x
[
n
]

(2)

In Eqn 2 x
[
n
]
=
[
x1[n

]
,x2[n

]
, · · · ,xNT [n

] ]T , y[n] = [
y1[n

]
,

y2[n
]
,· · · ,yNR [n

] ]T andH
[
n
]
, is amatrixwithhike j2π∆fiknTS

as its elements. In the steady state, knowing all hik and ∆fik ,
y
[
n
]
can be solved using the pseudo-inverse of H by stan-

dard zero forcing technique, as long as NR ≥ NT , which
minimizes the least square error as,

x̃
[
n
]
= (H⊤H)−1H⊤y

[
n
]

(3)
The above technique of decoding is known as zero forc-
ing [36]. In some cases H may be ill-conditioned (low rank)
and the pseudo-inverse maybe very sensitive to noise. To
avoid sensitivity to noiseMinimumMean Square Error (MMSE)
[36] uses the equation,

x̃
[
n
]
= (H⊤H − N)−1H⊤y

[
n
]

(4)
In Eqn 4, N is a diagonal matrix with Nii is the noise floor
value of the receiver i .

4.3 Blind Estimation
When K new packets arrive (such as P1 and P2 in Fig. 12 (c))
with NT concurrent transmissions in previous steady state
phase, Eqn 1 can be rewritten as:

yi [n] =
NT∑
k

hik · e j2π∆fiknTS · xk [n]+

K∑
l

hil · e
i2π∆filnTS · P [n − nl ]

(5)

where P [n] are the known preamble samples, and nl is the
arrival time of each packet, with n1 being the earliest one.
hik , fik have all been estimated for i = 1 · · ·NT at each
receiver j . Thus, we need to jointly decode the following un-
known variables. (i) The samples from NT concurrent trans-
missions: xi [n] ,∀i = 1 · · ·NT ; (ii) K New packets’ channel
and CFO for each receiver: hil , fil ,∀l = 1 · · · K, i = 1 · · ·NR .

We adopt the idea provided in [58] to reduce the unknown
number of CFOs from KNR to K . The idea relies on the
observation that the CFOs among base-stations remain con-
stant for several seconds and can be measured periodically.
Thus, knowing CFO to any single BS, allows us to derive the

same for the remaining BS. Let the CFO among two base-
stations i and j as δi j be known. Therefore, Iris only needs
to estimate one CFO variable between transmitter k and a
reference receiver r , which is ∆frk . The rest CFO values can
be obtained as ∆fjk = ∆frk + δr j . Utilizing the known clock
offsets among receivers reduce the number of CFO variables
from NR to 1 for each transmitter.
The known preambles provide an opportunity to decode

all these unknowns. WithM samples, we accumulate NR ·M
equations, and try to solve NT ·M data samples variables,K
CFO and KNR channel variables. Our goal is to estimate the
unknowns by solving the over-determined set of equations
in a least mean square sense.

A key challenge in solving the equations formed by Eqn 5
is that the set of equations are non-linear due to the CFO
terms which are multiplied with the unknown channel vari-
ables. We arrange the equations in Eq 5 into the form of
Ax = b, where x represents the vector containing all the
unknowns: KNR channel variables (hjk ,k = 1 · · · K, j =
1 · · ·NR ) and NT ·M sample variables (xi [n] , i = 1 · · ·NT ).
A represents the coefficients, which contains the CFO values.
Treating the CFO values as known values, we use least square
approach to solve the over-determined linear equations, with
the residual error as ∥Ax̃ − b∥2, where x̃ = (A⊤A)−1A⊤b
(Eqn 4 for MMSE). Therefore, we formulate the following
optimization problem to estimate CFO and solve for data
samples concurrently.

minimize
∆frk ,∀k=1· · ·K

∥Ax̃ − b∥2

subject to x̃ = (A⊤A)−1A⊤b,
∆fjk = ∆frk + δr j ,

∀j = 1 · · ·NR , j , k,∀k = 1 · · · K .
In our implementation we use the Nelder-Mead Optimiza-

tion [53] for the above non-linear optimization.

4.4 Conditions for Blind Estimation
After MTS time in the blind estimation state, Iris has MNR
equations corresponding toM received IQ samples at each
of the NR receivers. There are MNT number of unknown
data samples to be estimated for the NT ongoing transmis-
sions from the previous steady state phase, NRK unknown
channels and NR CFOs for the K new transmissions. Thus,
in order to solve for the unknowns,

MNR ≥ MNT + (NR + 1)K (6)
We name Eqn 6 the Blind Estimation Sufficiency Condition
(BESC). As shown in Fig. 11, the decoding transfer to steady
decoding if BESC can be satisfied1.
1Note that Eqn 6 is the worst case since if some transmissions end earlier
then the number of unestimated data samples will be less than MNT



Duration of Blind Estimation Phase. In order for Eqn 6
to be satisfied the blind estimation phase must last at least
M samples, where

Mmin ≥
(NR + 1)K
NT − NR

(7)
Minimum Number of Receivers Needed. From Eqn 7 it
is clear that NR > NT , otherwise τ0 becomes unbounded.
Note blind estimation requires one additional receiver than
traditional MIMO, where NR ≥ NT .
Burst Limit Condition. Eqn 6 assumes that the IQ sam-
ples from the K transmissions are known since they corre-
spond to the preambles. If the blind estimation phase lasts
longer than the duration of preamble length LP in samples,
i.e.Mmin > LP , then the above assumption will no longer be
true. Under this condition, the transmissions whose chan-
nels have not yet be estimated will add to the unknown
data samples and the number of unknown data symbols will
grow faster than the number of equations. Thus, for blind
estimation to work, the burst size should be limited to,

Kmax = K ≤
(NR − NT )LP

NR + 1
(8)

In Sec. 4.5 we discuss how recovers and functions under
scenarios where the burst limit condition is violated.

4.5 Handling Error Conditions
In this section we discuss the various error conditions Iris
might experience and how it recovers from them.
Preamble Detection Errors. There can in general be three
kinds of preamble detection errors – missed detection, where
a preamble is completely missed, incorrect start of frame,
where the starting point of the payload is incorrect and false
detection, where a preamble is detected when there was no
transmission. Given that preambles are usually designed for
robust detection, the first two errors usually occur when
the transmission is too weak compared to the others. Such
weak transmissions are usually too weak to “significantly”
degrade the decoding of the other transmissions. In case of a
falsely detected preamble, the estimated channel amplitude
is usually very small since there was no preamble in the
first place and thus ends of not having a significant effect on
the decoding process as well. While we have observed and
simulated these in practice, we do not provide the results in
the paper due to lack of space.
Traffic Burst Exceeds Burst LimitWhen several devices
begin transmitting within a very short time, traffic bursts
occur. If either NT ≥ NR or K > Kmax (Eqn 8) Iris will
not be able estimate the IQ samples and decode packets. Iris
can detect if any of the above conditions are violated while
trying to decode and take corrective action if necessary. The
recovery of Iris from a large burst depends on whether the
underlying access is slotted (devices are time synchronized

and their transmissions respect slot boundaries) or unslotted.
We now discuss each of these scenarios.
Recovery FromBursts in Slotted Access : If IoT multiple
devices transmit at exactly the same time (within ±80µs ), Iris
will not be able to distinguish their preambles and hence will
not be able to decode them separately. This can be avoided
by making the IoT devices adding a small (few ms) random
delay before their transmissions. In circumstances where,
the burst limit is exceeded in a certain slot, all the packets
will be lost. However, Iris returns to the idle state at the end
of each slot period and so the effect of burst in the previous
slot is not carried over to the next slot.
Recovery From Bursts in Unslotted Access : In the ab-
sence of slot boundaries, inability to decode packets can get
carried over to successive overlapping packets leading to a
cascade of failures until, Iris returns to the idle state. While
this will occur naturally as soon as the burst dissipates, it
may be more efficient for the base-station to explicitly signal
the devices (e.g. through a busy tone) to stall transmitting
for a short period of time (usually two packet transmission
intervals or about 100ms). This will allow Iris to return to
idle state and resume as usual.

5 IMPLEMENTATION AND DEPLOYMENT
Implementation of Iris requires access to raw IQ samples
from the radio. Commercial MURS band radios e.g. Raveon
RV-M7-GX do not provide this capability. In addition, Raveon
devices use proprietary preambles, compression and encryp-
tionmechanisms thatwe do not have access to. Consequently,
we used USRP (B200, N210) for our implementation of Iris
with WBX-40 radio daughterboards.
Narrowband channelization. The USRP radio daughter-
baords are not inherently designed to support narrowband
12.5 kHz channels. WBX-40 has 40 MHz bandwidth. USRP
supports reducing this bandwidth to 200 kHz through digital
filtering on the on-board FPGA. In order to reduce this band-
width to 12.5 kHz, we used a digital elliptic lowpass filter
with a passband of 12.5 kHz and 50 dB rejection. The filtered
signal was downsampled to 12.5k samples/sec.
Bandwidth required per channel. Each raw IQ sample
comprises two 16 bits values one each for I and Q compo-
nents. At 12.5k samples/sec, the total bandwidth generated
is 400kbps. This is then transmitted to a central entity in the
cloud for joint decoding using Iris.
Packet structure and modulation. We used FSK modu-
lation with 2.5 kHz deviation as specified by FCC MURS
regulations. We used Barker codes for preambles to improve
preamble detection. The payload bits were randomly gener-
ated, and each packet is 50 ms long. We use the GFSK module
in GNURadio [8] for modulation and demodulation.



IoT devices. We use USRP B200 as IoT transmitters, which
have maximum power output of 10dBm. In order to allow
these devices to transmit at 2W, we used the ZHL-1-2W-S+
power amplifier from Mini-Circuits [1].
Base-stations. Our current deployment uses USRP N210
with WBX-40 daughterboard as four base-stations, with two
each placed on two roof-tops of 20m high buildings located
1.3 Km apart (shown in Fig. 14). Each base-station is equipped
with a single omnidirectional antenna [6].
Implementation of Iris. Iris has been implemented in C
and Python. The steady state decoding and CFO optimiza-
tion are coded C in a multi-threaded fashion as described in
Sec. 6.2. We use GNU Scientific Library [3] for parallel matrix
inverse, and a non-linear optimization library NLopt [7] to
implement Nelder-Mead method. As discussed in Sec. 4.2,
both zero forcing and MMSE can be used for decoding. We
implemented both techniques and observe no notable differ-
ence in performance. The results in Sec. 6 are obtained with
zero forcing.
Limitations of using USRP. As discussed earlier USRP
radios are not designed specifically for 12.5 kHz MURS band
like the RV-M7-GX radios. Consequently, even though we
use digital filters in our implementation to transmit and
receive on MURS band channels, our USRP devices suffer
from a significantly higher noise floor compared to the RV-
M7-GX radios. Further, we do not use any forward error
correction (FEC) coding unlike RV-M7-GX radios. These
factors together contribute to reduce the range of our USRP
deployment to ≈ 3km, significantly lower compared to 13-
14Km using RV-M7-GX.

6 EVALUATION
In evaluating Iris we ask three key questions,
• How well does Iris decode concurrent uncoordinated
long rage uplink transmissions in scenarios where non-
MIMO techniques fail? In order to answer this question
we use our Iris deployment (Sec. 5) to perform outdoor
tests.

• How much gains in network capacity can Iris provide for
a real operational IoT network deployment compared to
non-MIMO collision avoidance and resolution schemes?
Since our USRP deployment does not provide the nec-
essary scale to answer this question, we perform trace
driven simulations on traces from our 90 vehicle opera-
tional IoT network.

• How does Iris scale to a large number of base-stations for
computation in the cloud? We use our implementation
in the cloud and benchmark the running time of Iris and
describe how Iris is amenable to parallel execution.

Co-located Transmitters

Similar RSS

Similar RSS

Figure 13: Co-located transmitters having similar RSS.

6.1 Outdoor Testing of Iris
To demonstrate the effectiveness of Iris we first test the hard-
est scenario to decode concurrent transmissions – when all
the transmissions originate from a set of very proximate loca-
tions (all IoT devices mounted on the same car) as depicted in
Fig. 13. This scenario is particularly hard since, at any given
base-station all concurrent transmissions will be received
at almost the same RSS. This means that techniques such
as successive interference cancellation (SIC) that leverage
the difference in RSS between concurrent transmissions to
iteratively decode the stronger signals are expected to fail.
Further, diversity based techniques that leverage the fact that
the relative RSS ordering of different transmissions might
be different will also not perform well. Next, in order to in-
vestigate how well Iris works when RSS are different, we
control the power levels of the different transmitting devices
to achieve a variety of RSS differences.
Experiment Description. We place three transmitters in
a single car. The transmissions are received at four base-
stations, with two each placed on two roof-tops of 20 m
high buildings located 1.3 km apart (shown in Fig. 14). Each
base-station is equipped with a single omnidirectional an-
tenna. We drove the car around stopping at locations where
we could park to conduct the experiment at 17 different lo-
cations shown in Fig. 14. At each location, we control the
transmitters to create three different scenarios with colli-
sion free, 2 and, 3 concurrent transmissions. Three B200 are
connected to a host laptop via USB3, which can be coarsely
synchronized down to a few tens of samples. Such control is
sufficient to induce intentional 2 and 3 packet collisions. For
each experiment the transmitters transmit 126 packets.
Other collision resolution schemes for comparison. In
addition to Iris we also attempt to decode the packets us-
ing four other schemes. First, in order to measure SNR of
the individual transmissions we transmit from each of the
three devices individually deemedCollision-free. Our Baseline
scheme comprises decoding plainly without any collision
resolution. Antenna Diversity relies on the chance that given
different wireless channels, it maybe possible that at one
of the antennas, a transmission might be received at a high
power and be amenable to decoding. In the SIC scheme, SIC
is applied individually at each base-station attempting to
decode as many packets as possible.



Figure 14: BS deployment and transmit locations. Two
BS are placed at each location.
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Figure 15: Decoding accuracy at different locations. (a)
Average BER. (b) Average success packet rate.

Decoding Accuracy vs Average SNR. In our experiment,
each transmission has four SNR values corresponding to the
four different receiving base-stations. The decoding accu-
racy is expected to depend on all the four SNR values. Fig. 15
(a) and (b) depict Iris’s decoding bit error rate and average
packet success rate versus the average SNR across the four
base-stations and compare it against the other schemes at
each location. The corresponding curves for collision-free
scenarios is also provided for reference. As expected, none of
the schemes other than Iris is able to decode transmissions
even at SNRs as high as 20dB. This is because as discussed,
in our experiment, at each individual antenna each transmis-
sion experiences interference from one or two other equally
strong transmissions.
Fig. 16 plots the BER and packet success rate for Iris’s

decoding, under 2 and 3 collision cases. Not surprisingly,
slightly better performance is achieved with fewer collisions,
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Figure 16: Iris’s decoding accuracy under 2-collision
and 3-collision cases. (a) Average BER. (b) Average
packet success rate.
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which makes the decoding problem more over-determined
(Sec. 4.2 and 4.3).
Does using more base-stations help? We now ask the
question, “For the same number of concurrent transmissions,
does using a greater number of base-stations improve perfor-
mance?” As discussed in Sec. 4, having more receivers helps
create an over-determined system, improving performance
in general. To validate this argument, we focus on 2-collision
scenarios, which requires a minimum of 3 receivers to de-
code the packets. With a total of 4 base-stations in all, there
are 4 possible distinct subsets of three base-stations created
by removing one of the BS. For each of the four subsets we
decode using Iris using only the three base-stations in the
subset. Fig. 17 depicts the overall packet success rate over
all the locations for each of the four subsets as well as that
by using all four base-stations for 2 and 3 collision scenarios.
As seen from Fig. 17, choosing any specific subset of three
base-stations yields in poor overall performance compared
to using all 4 in Fig. 17.
SIC versus Iriswhen RSS are different. In all prior exper-
iments, colliding transmissions were received at the same
power at every base-station and thus SIC was unable to de-
code. However, SIC’s performance is expected to improve as
the received transmissions have different RSS values. In order
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to understand how SIC compares to Iris as the difference in
received RSS increases, at each location we create 2-collision
transmissions with one device transmitting at lower power.
We conduct the same experiment at several different steps of
lower power levels. Fig. 18 plots Iris and SIC’s packet success
rate, for both the stronger and weaker transmitter.
As seen from Fig. 18, Iris decodes both strong and weak

transmissions well up to 12 dB RSS difference between the
stronger and weaker signals, however, it is unable to decode
when the difference is 20dB. Not surprisingly SIC is unable to
deode either the strong/weak transmissions until about 8dB
difference between the stronger and weaker signals. As this
difference increases, the stronger signal is received reliably. It
is surprising to note however that the weaker transmission’s
reception gains only until 40% at 16dB difference and falls to
almost zero when the difference is 20dB. This is unexpected
since, the SIC should be able to cancel the stronger signal
perfectly and recover the weaker signal at 20dB SINR. The
reason for this is revealed in Fig. 19 which depicts the CDF
of the stronger transmissions’ RSS. As seen from Fig.19, over
98% of the RSS are below -85dBm and over 80% are below
-90dBm. At 20dB difference, the weaker signal is below -
105dBm over 98% of the time and below -110dBm over 80%
of the time. Given that -105dBm is the practical decoding
limit for the transmissions, the weaker transmission is not
decodable either by SIC or Iris. This is distribution of RSS
is typical in practical deployments as well. For example as
seen from Fig. 5, RSS flls to below -90dBm at a distance of
3Km while the range is about 14Km. This means that for
over 95% (100 142−92

142 ) of the coverage area, the RSS will be
below -90dBm.
CFO estimation error and its impact. A key operation in
the blind estimation phase is CFO estimation via an optimiza-
tion process (Sec. 4.3). To provide insight into how accurately
Iris estimates the CFO and the estimation error’s impact, we
use the collision free reference packets to obtain a ground
truth of the CFO, and compare Iris’s estimated values against
them.

Fig. 20 plots the CFO estimation error for different SNR val-
ues. As SNR improves to 10 dB, the estimation error quickly

drops below 5% in most cases for both 2-collision and 3-
collision, showing the effectiveness of Iris’s optimization
process. To understand the effect of CFO estimation error on
packet success rate, Fig. 21 compares packet success rates
obtained by using the groundtruth CFO (w/o CFO) versus
using the CFO estimated in blind estimation (w/ CFO). At
low SNR, correcting CFO error does not improve PSR signif-
icantly indicating that noise, rather than CFO error, is the
primary cause for low decoding accuracy in this case. At high
SNR values (> 10dB), the impact of CFO errors increases and
there is reduction of about 10% in packet success rate due
CFO estimation errors.

6.2 Real Time Decoding Latency
Iris decoding occurs in the cloud. In order to keep up decod-
ing in real time and scale to a large number of base-stations,
Iris’s implementation must be amenable to parallel execution
so that it can be scaled across multiple cores. In this section
we benchmark how Iris scales to support real time decoding
for a large number of base-stations making using of multiple
cores in the cloud.
Iris is amenable to two kinds of parallelization. First in

steady state each sample period can be decoded indepen-
dently in a separate instance since there is no dependency
across sample periods. Second, within a single sample period,
the matrix inversion as well as optimization libraries used
in steady state and blind estimation are amenable to multi-
threaded with our implementation introduced in Sec. 5.

To evaluate Iris’s operation latency, we perform decoding
operation on a 10 core Intel Xeon E5-2630 processor, with and
without enabling parallelization. The decoding latency under
different number of concurrent transmissions is plotted in
Fig. 22. With 4800bps, a 32-byte packet is 53.3ms long. Iris
is guaranteed to keep up with incoming packets as long as
the decoding time for each set of concurrent packets is less
than 53.3ms, which is plotted as the green dotted line in the
figure. Clearly, the decoding latency is unacceptable without
enabling parallel processing. On the other hand, Iris can
process up to 30 concurrent packets at real time. Reflecting
on a real-world network, 14 2-antenna base-stations can
support 30 concurrent transmissions, which are sufficient to
provide coverage for several cities. For different geographical
regions that are far apart, one can instantiate a separate
instances of Iris since they are expected to have no common
receiving base stations and scale to entire states or an entire
country.

6.3 Large Scale Trace Driven Simulations
In this section we ask the question “How much network ca-
pacity gains can Iris provide in a real large scale IoT network
deployment?” In order to answer this question we leverage
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the network traffic traces from our 90 vehicle deployment
(described in Sec. 2). Our currently deployed network ve-
hicles transmit every 10s, over preassigned TDMA slots to
avoid collisions. However, since vehicles transmit messages
only when they are moving, only a fraction of these slots
are used at any given time. Fig. 23 depicts the utilization of
number of TDMA slots as a function of hour of day in our
current network for 4 consecutive days, Tuesday-Friday. As
seen from Fig. 23, even during peak hours the utilization is
below 25% indicating the oversubscribed nature of TDMA.
Methodology for Simulations. In our simulations, we use
a hexagonal cellular deployment. The distance between BS
(cell centers) is chosen to be the distance where mean RSS
falls -100 dBm. Based on the path loss curve obtained from
our deployment in Sec. 2, this distance is 8 km.

Our current IoT network uses TDMA and hence using the
traces themselves as is will yield no collisions. In the absence
of TDMA however, while each vehicle would still continue
to transmit periodically once every 10 seconds, the offset
time of transmission within the 10 second epoch would be
determined by when the vehicle first started moving i.e a
random number between 0 to 10. In order to emulate this
behavior, we slightly alter the trace, by offsetting the start
time of each vehicle’s move segment (a continuous period
that the vehicle keeps moving) by a random amount, in the
range of 0 to 10 seconds.
Our network today operates well below its capacity, but

we want to ask the question “what would happen if we used
more vehicles and what would be the network capacity for
different schemes?” To increase the number of vehicles, while

preserving the underlying traffic characteristics we super-
impose multiple days diurnal traffic traces into one. When
superimposing, instances of the same vehicle from different
days are considered to be different unique transmitters. In
order to compute the RSS at the base-stations we used the ac-
tual GPS locations of the vehicles from the traces but used the
path loss model obtained from the measurements in Sec. 2.
In order to estimate the log-normal fading in the channel
we measured the standard deviation in RSS for receptions of
the same transmission at two BS antennas separated by 10m
over 300,000 transmissions and found this to be 3.6 dB.
Ineffectiveness of Listen Before Transmit (LBT).While
LBT is not mandated in MURS bands, it is extensively used in
WiFi to avoid collisions. We ask the question, how effective is
LBT for long range IoT networks? Long range IoT networks
differ from indoor LANs is that while devices are at the
ground level, the base-station itself is located high up on
a roof top. Consequently, the signal propagation between
devices at the ground level experiences significantly higher
number of obstacles and hence, a much greater path loss than
that between the device and the base-station. Base-stations
are also equipped with higher gain antenna that the IoT
devices due to form factor and cost constraints.
Fig. 24 captures the significant difference in range for

ground-ground versus and ground to roof BS. In this ex-
periment, we deployed a device located at the ground level
(≈ 2m high on top of a parked car) that was configured to
receive similar to a BS. The MURS base-station, itself was
on the roof 20 m high building right across the street from
this device. We then placed a second device in another car
and drove around obtaining over 40,000 measurements in an
urban environment at various distances. Thus, transmissions
were received at both the static device and the base-station
from the same set of locations. Fig. 24 shows that the range
of the ground-ground channel is ≈5.5km while the same for
the ground-roof channel is ≈ 14km – 2.5× greater, based on
using -105dBm as the range.

With a carrier sensing range of -100 dBm (recommended
by manufacturer), an IoT device has a sensing range of 3.5Km
- ≈4× less than the range of the base-station. In other words,
devices at the ground level will not be able to sense ≈ 93%
(1 − 1

42 ) of the other transmitting devices within range of
the base-station (hidden terminals). Fig. 25 compares the
theoretical normalized throughout of LBT with 93% hidden
nodes with ALOHA and slotted ALOHA. As seen from Fig. 25
LBT performs almost as well as un-slotted ALOHA.
Simulation Results. Fig. 26 (a), plots the fraction of suc-
cessfully received packets over an entire day from all those
that were transmitted for different number of vehicles when
each base-station has one antenna. As the number of vehicles
increases, the number of concurrent transmission increases
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as well, resulting in more collisions. As seen from Fig. 26 (a),
SIC performs best among existing approaches and is able
to achieve about 25% reception for 100 vehicles, however
this performance does not improve significantly with more
antenna at each base-station. Iris, on the other hand, with
only one antenna at each base-station achieves around 3 ×
throughput over SIC for 100 vehicles and 5 × for 200 vehicles.
This demonstrates how distributed MIMO using multiple
base-stations (one in each of the 7 neighboring cells) helps
decode concurrent transmissions. Fig. 26 (b), examines the
effect of deploying more (2-4) antennae at each base-station.
1-4 antennae per base-station. As seen from Fig. 26 (b), capac-
ity scales (almost linearly) with an increase in the number
of antennae/BS and with 4 antenna, about 800 vehicles can
be supported.

6.4 Analysis of Traffic Bursts
In this section, we use a packet level simulations to under-
stand how traffic bursts effect Iris and how it recovers from
when sudden large bursts hamper its decoding. As discussed
in Sec. 4.3 and 4.4, Iris cannot decode if either the number of
transmissions is greater than the number of receivers or if
the burst limit is violated. In this section through simulations,
we analyze how such conditions effect overall capacity. Since
analysis is not analytically tractable, we conduct packet level
simulations with packet arrivals following a Poisson process.
Packets are lost only under bursts that disallow Iris’s decod-
ing. All packets in such a burst are assumed to be lost. We
implement slotted, unslotted and unslotted with busy tone
feedback (as discussed in Sec. 4.4) to dissipate the bursts.
There are no downlink acknowledgements.

As expected the general trend in all capacity curves Fig. 27
and 28 is that the capacity first increases with Poisson rate
as the channel utilization grows higher and drops as the
high rate causes lost packets due to large bursts that Iris is
unable to decode. The maximum capacity corresponds to the
peak capacity in the curves. To provide a baseline when Iris
is not used, since the packet duration is 50ms, a maximum
throughput of 20 packets/sec is possible in the absence of
MIMO. The maximum theoretical capacity for slotted and
unslotted access corresponds to 7.4 packet/sec ( 20e ) and 3.7
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packets/sec ( 202e ) respectively. Fig. 29 depicts that maximum
capacity of the network as a function of number of receiving
antennae for slotted, unslotted and unslotted with busy tone
respectively. As seen from Fig. 29, the capacity scales linearly
with increase in the number of antennae and as expected
slotted access provides little over 2× the capacity of unslotted
access. The use of busy tone to signal to occurrence of a burst
in unslotted access improves the capacity by about 10%.

7 RELATEDWORK
Low-PowerWide-Area Networks. LPWAN has gained in-
creasing interest over recent years. Semtech [4] and SigFox
[9] have developed chipsets to empower this technologywith
narrow bands of unlicensed spectrum. Over licensed band,
LTE-M [60] and NB-IOT [59] standards have been developed
for cellular base stations to communicate with low-power
IoT devices. LPWAN’s range and performance have been
analyzed and measured in [51, 57, 70]. More recent studies
have focused on improving LPWAN’s scalability [33], range
[31, 32], and energy efficiency [55, 68, 73].
Distributed MIMO. Distributed MIMO systems synchro-
nize distributed transmitters to enable them to concurrently
transmit to multiple independent receivers, without inter-
ference. It has been studied in the contexts of sensor net-
works [29], wireless LANs [30] and cellular networks [46].
In the past, a number of works have shown from a theoret-
ical perspective how distributed MIMO improves through-
put as the network size grows [15, 49, 65]. More recently,
distributed MIMO has been moved from theory to practice



[14, 18, 21, 39, 40, 58, 79], demonstrating the ability to harvest
both diversity and multiplexing gain. Differ in details, these
works focus on a variety of problems, including synchro-
nizing the transmitters in time, phase and frequency, power
control, and controlling overhead of channel measurements.
Successive Interference Cancellation. The achievable ca-
pacity of SIC in various types of networks have been derived
and analyzed [71, 72, 75]. The emergence of software-defined
radios makes it possible to implement this technique in prac-
tice, and a number of works have shown SIC’s ability to
improve link layer performance [16, 45, 54, 76]. In general,
SIC’s performance depends on whether the current strongest
signal has sufficient SNR in the combined signal. A number
of works have shown that SIC is only able to achieve de-
cent performance when different signals’ power levels meet
certain requirements [63, 64].
Non-orthogonalmultiple access (NOMA) In contrasts to
conventional orthogonal multiple access, NOMA shares the
same radio resources among users at the cost of increased
interference [27, 61]. Recent power domain NOMA primar-
ily relies on SIC in uplink for the base-station to decode
concurrent messages, which can be aided with power con-
trol to improve performance [43, 67]. Power control over
uplink requires channel information from clients to the base-
stations, which requires coordinatedmeasurements.Without
any power control, uplink NOMA performance highly de-
pends on the effectiveness of SIC. Particularly, the channel
(power) of different transmitters need to be distinct for SIC
to perform well [43].
Blind MIMO decoding. The idea of blind MIMO decoding
has been proposed before. Talwar et al. apply MMSE tech-
niques to decode over small alphabets while simultaneously
recovering the channel gain matrix [69]. Authors in [41]
present a statistical learning algorithm that uses the estimate
of the covariance matrix of the received signals to learn the
channel gain matrix. More recent works have significantly
improves the performance and efficiency [28, 56]. However,
exisiting blind estimation approaches typically rely on spe-
cial structures in the modulation. For example, the design in
[41] requires the modulation constellation to be discrete, and
needs a large number of samples to decode, while [28, 56, 69]
only work with hypercubic constellations. such as BPSK and
MPAM.
Cloud RAN. Iris’s design largely falls in the domain of cloud
radio access network (RAN), an emerging mobile network
architecture which can address a number of challenges the
operators face while trying to support growing end userâĂŹs
needs. It was first proposed in [47]. Themain idea is to collect
the baseband signals from multiple base stations into cen-
tralized pool for coherent combining [24, 25, 38, 77]. Cloud
RAN is targeted by a number of mobile network operators
worldwide, including , IBM [47], Alcatel-Lucent [62], Nokia

Siemens Networks [37], Intel [23] and Texas Instruments
[34]. It is also a candidate for future generation of cellular ar-
chitecture [26]. Recent researches have focused on adapting
to nonuniform traffic and scalability [22, 48, 50, 52], reduc-
ing energy and cost [44], and improving throughput, delay
performance [42, 46, 78]. These past researches are mostly
in the cellular network realm.

Most similar to Iris, OpenChirp [31] and Charm [32] pro-
pose to allow multiple LoRaWAN gateways to pool their
received signals in the cloud, coherently combining them
to detect weak signals. In the authors proposal, multiple
gateways utilize LoRa’s modulation scheme to detect weak
signals, and send the packet raw IQ samples to the cloud.
Through effective grouping and time synchronization algo-
rithms at the cloud, Charm jointly decodes with coherent
MIMO combining. Charm’s ability to decode weak signals
significantly improves LPWAN’s range and client device
battery life. Iris, on ther other hand, focuses on a different
problem, handling packet collisions in long range LPWAN.

8 CONCLUSIONS
In this paper we show that the VHF narrowband channels
including unlicensed MURS bands as well as the licensed
narrowband channels can offer far superior geographical
coverage compared to ISM bands for deploying long range
wide area IoT networks. This increased geographical cov-
erage can help cover large areas at a significantly smaller
infrastructure deployment and management costs. We prove
this through a large scale deployment over 400 sq Km in-
volving 90 vehicles. In order to meet the increased capacity
demands arising out of a greater number of IoT devices, we
propose a novel distributed multi-user MIMO technique –
Iris, that does not require any coordinated measurements
between IoT devices and base-stations. This is inherently
well suited for IoT deployments since IoT devices typically
transmit messages in response to unpredictable sporadic
events and prefer to sleep during other times. Through field
deployments and trace driven simulations based on our IoT,
we demonstrate that Iris is practically viable and can offer 4×
capacity gains for each antenna added at each base-station.
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